If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1+4z+z^2=0.
a = 1; b = 4; c = +1;
Δ = b2-4ac
Δ = 42-4·1·1
Δ = 12
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12}=\sqrt{4*3}=\sqrt{4}*\sqrt{3}=2\sqrt{3}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{3}}{2*1}=\frac{-4-2\sqrt{3}}{2} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{3}}{2*1}=\frac{-4+2\sqrt{3}}{2} $
| 4x/11+12=20 | | -3(x+7)+24=6x-9)(x+9) | | 8y-4y=-12 | | -8x-4x=-1 | | -6=3(-6-4x) | | 1/3y=64 | | 5(4x+4)=620 | | 14+2x=30+1.50x | | |0.5x-4|=1.4 | | 9/5c+32=50 | | 2(4a-4)+2a=28-8a | | -4x+8=2x-10 | | 7^(x-19)=49 | | 20-6n=(n+6) | | 7^x-19=49 | | -1+10d=9d+9 | | 7^x+19=49 | | 6.4=(4x-9)(2x+1) | | 10p-6=7p+9 | | -3x-3=3(x+3) | | 3w+5=1w+15 | | 2^x+19=49 | | I(1/2)=210(1.08^t) | | 9-(2a+6)=(-9) | | 10n-21=7n | | 12+2x=5x+18 | | 3y+6=1y | | (4x+1)(17)=76 | | X+y/4=5 | | 2x+x-17=4 | | 5p-12=3p | | (5u-6/3)=(u-3/2)+10 |